неравенства »

найдите решение системы неравенств - страница 4

  • Нужно решить систему неравенств: \(\begin{cases}2^{x^2+|x|}\cdot 3^{-|x|} \leq 1\\|x-1| \leq \frac{9x^2}{2} +2,5x \end{cases}\)


    Решение:

    $$ 2^{x^2+|x|}\cdot3^{-|x|}\leq1, \\ 2^{x^2+|x|}\cdot3^{-|x|}>0, x\in R, \\ \ln(2^{x^2+|x|}\cdot3^{-|x|})\leq\ln1, \\ \ln2^{x^2+|x|}+\ln3^{-|x|})\leq0, \\ (x^2+|x|)\ln2-|x|\ln3\leq0, \\ x^2\ln2+|x|\ln2-|x|\ln3\leq0, \\ |x|(|x|\ln2+\ln2-\ln3)\leq0, \\ |x|(|x|\ln2+\ln\frac{2}{3})\leq0, \\ |x|(|x|\ln2+\ln\frac{2}{3})=0, \\ |x|=0, x_1=0, \\ |x|\ln2+\ln\frac{2}{3}=0, |x|=-\frac{\ln\frac{2}{3}}{\ln2}, x_2=\frac{\ln\frac{2}{3}}{\ln2}, x_3=-\frac{\ln\frac{2}{3}}{\ln2}, \\ $$

    $$ \{ \ln\frac{2}{3}\approx-0,4, \ln2\approx0,7 \} \\ \frac{\ln\frac{2}{3}}{\ln2}\leq x\leq-\frac{\ln\frac{2}{3}}{\ln2}, \\ x\in [\frac{\ln\frac{2}{3}}{\ln2};-\frac{\ln\frac{2}{3}}{\ln2}]. $$