дроби »

при каких значениях переменной дробь имеет значение - страница 2

  • Исполнитель Чертежник перемещается на координатной плоскости, оставляя след в виде линии. Чертежник может выполнять команду Сместиться на (a, b) (где a, b — целые числа), перемещаю- щую Чертежника из точки с координатами (x, y) в точку с координатами (x + a, y + b). Если чис- ла a, b положительные, значение соответствующей координаты увеличивается, если отрицательные — уменьшается. Например, если Чертежник находится в точке с координатами (5, 3), то команда Сместиться на (2, –3) переместит Чертежника в точку (7, 0). Запись Повтори k раз Команда 1, Команда 2, Команда 3 конец означает, что последовательность команд Команда 1, Команда 2, Команда 3 повторится k раз. Чертежнику был дан для исполнения следующий алгоритм: Повтори 4 раза Сместиться на (2, 0), Сместиться на (0, 3), Сместиться на (–2, –3) конец Какую фигуру нарисует Чертежник? 1) треугольник 2) квадрат 3) незамкнутую ломаную линию 4) параллелограмм


    Решение:

    рисуете обычную сетку координат х и у, начинаете с точки (0, 0), т.е. вот так по координатам (х,у) ставите в ней точку, далее смотрим на условие:
     1) 4 раза Сместиться на (2, 0), следовательно получаем последовательно 4 точки: (2, 0), (4,0), (6,0) (8,0), т.е. к х прибавляем х, к у прибавляем у и получаем точки, конечную точку фиксируем на графике ( было х=0 и у=0, в конце получаем что х= 4*(х+2) и у=4*(0+0), умножаем на 4 потому, что в условии написано "4 раза сместиться на (2,0) )

    2) Сместиться на (0, 3),  следовательно делаем то же самое: из точки (8,0) перемещаемся в точку (8,3), получается что теперь х = 8+0, а у=0+3)

    3)Сместиться на (–2, –3),  так же: из точки (8;3) в точку (6;0), так как х=8-2, а у=3-3

    в итоге получается треугольник:)

  • Преобразуйте выражения в многочлен:
    а) (2х - 5) (2х + 5);
    б) (3-4х)^2
    в)(х+4)^3
    г)(х-6+у)^2
    д) (3х-2) (9х^2+6х+4)
    Номер 2:
    Разложите на множители: а) 8х^2 - 8у^2; б) 2а^2 + 8ав +дв^2; в) а^4 -1
    Номер 3:
    При каких значениях переменной значения выражений х(х+2) и (х-4) (х+4) равны?
    Номер 4:
    Решите уравнения, используя разложение на множители многочленов:
    а) 9х^3 - х = 0
    б) 5х^2 - 10х + 5 = 0


    Решение: Преобразуйте в многочлен: 
     а) (а – 2)( а + 2) – 2а(5 – а) =а^2-4-10a+2a^2=6a^2-10a-4
     б) (у – 9)2 – 3у(у + 1) =y^2-18y+81-3y^2-3y=-2y^2-21y+81
     в) 3(х – 4) 2 – 3х2 =3(x^2-8x+16)-3x^2=3x^2-24x+48-3x^2=48-24x
    2. Разложите на множители: 
     а) 25х – х3=x(25-x^2)=x(5-x)(5+x)

     б) 2х2 – 20х + 50 =2(x^2-10x+25)=2(x-5)^2=2(x-5)(x+5)
     3. Найдите значение выражения а2 – 4bс=36-4*(-11)*(-10)=36-440=-404
     а) 452 б) -202 в) -404 г) 476 
    4. Упростите выражение: 
     (с2 – b)2 – (с2 - 1)(с2 + 1) + 2bс2 =c^4-4bc^2+b^2-c^4+1=-4bc^2+b^2+1
    5. Докажите тождество: 
    (а + b)2 – (а – b)2 = 4аb

    a^2+2ab+b^2-a^2+2ab-b^2=2a+2ab=4ab

    второй 1)x²- 4=(х+2)(х-2) т. к 2 в квадрате равно 4

    2)x²- 3=(х+)(х-)

    3) не раскладывается т. к там сумма

    4)a²- 4=(а+2)(а-2)

    5)a - 9=(корень из а +3)(корень из а -3)

    6)x² - x=(х+корень из х)(х-корень из х)

    7)u - 3=(корень из u+)(корень из u-)

    8) не раскладывается

    9)7 - a⁴=(+a²)(-a²)

    третий 

    x(x+2)=(x-4)(x+4)
    x^2 + 2x = x^2 - 16
    x^2 - x^2 + 2x = -16
    2x = -16
    x = -8

    четвертый

    полный квадрат:

    x^2-9x+14=x^2-2*4,5x+20,25-20,25+14=(x-4,5)^2-6,25=(x-4,5-2,5)(x-4,5+2,5)=(x-7)(x-2)=0

    x=7 или x=2

    x^2-5x-14=x^2-2*2,5x+6,25-6,25-14=(x-2,5)^2-20,25=(x-2,5-4,5)(x-2,5+4,5)=(x-7)(x+2)=0

    x=7 или x=-2

    разложение на множетели:

    x^2-9x+14=x^2-7x-2x+14=x(x-7)-2(x-7)=(x-7)(x-2)=0

    x=7 или x=2

    x^2-5x-14=x^2-7x+2x-14=x(x-7)+2(x-7)=(x-7)(x+2)=0

    x=7 или x=-2

  • 1) в каждой паре чисел большего модуля вычтиите меньший модуль.
    -0,8 и 4 ___
    0.9 и -0.99 ___
    1\4 и 2целых 3\4 ___
    2) При каких значениях переменной верно каждое равенство:
    " (X) - ()-скобки модуля "
    (X) = 12 ___________
    (Y) = -1 ___________
    (А) = 3.4 ___________
    (С) = 0 ______________
    3) При холодном способе засолки грибов норма соли составляет 4.5% массы грибов. Рассчитайте количество соли, необходимое для засолки 2.5 кг грибов.
    Решение:________________________
    __________________________________
    __________________________________
    Ответ: ______________
    4) Ширина прямоугольного участка земли 15 м, а длина 20 м. Найдите отношение ширины к длине и выразите его в процентах.
    Решение: _________________________
    __________________________________
    _________________________________
    Ответ: ____________
    5) Ширина прямоугольника 8 дм. Она составляет 20% его длины. Чему ровна площадь этого прямоугольника?
    Решение: ____________________________
    _________________________________-
    _________________________________-
    Ответ: _____________
    6) У пети 100 руб. У Феди на 20% денег больше чем у Пети, а у кати на 20% больше чем у феди. сколько рублей у Кати?
    Решение: _________________
    _____________________
    ____________________
    Ответ: ____________________
    7) Выполните действия:
    0.125 + 1\8 =
    0.125 - 1\8 =
    0.125 * 1\8 =
    0.125 : 1\8 =


    Решение: 1)
     4 - 0.8 = 3.2
     0.99-0.9=0.09
    $$ 2\frac{3}{4} - \frac{1}{4} = 2\frac{2}{4} = 2\frac{1}{2} $$
    2)
    x = 12; -12
    y - нету подходящих
    a = 3,4; -3,4
    c = 0
    3)
    2.5*4.5% = 2.5 * 0,045 = 0.1125
    4)
    a = 15, b = 20
    $$ \frac{a}{b}= \frac{15}{20} = \frac{15*5}{20*5}= \frac{75}{100} = 0,75 = 75\% $$
    5)
    a = 8дм,
    b = 20% от a
    b = 0.2 * 8 = 1.6
    s = ab = 8*1.6 = 12.8
    6)
    У Феди: = 100 + 100*0,2 = 100 + 20 = 120
    У Кати: 120 + 120 * 0,2 = 120 +24 = 144
    7)
    $$ 0,125 = \frac{125}{1000} = \frac{5}{40} = \frac{1}{8}\\ 1: 1/8 + 1/8 = 2/8 = 1/4\\ 2: 1/8 - 1/8 = 0\\ 3: 1/8*1/8= 1/64\\ 4: 1/8:1/8 = 1 $$

  • Приведите многочлен к стандартному виду и выясните, при каких значениях переменной его значение равно 1:
    а) x^3+2x^2+7x+8x-x^3-x^2-x^2
    б) 0,5y^3+2,7y^2+3,5y+6,5y-0,5y^3-2y^2-0,7y^2
    в) 3z^4-z^2+4z+z+z^2-2z^4-z^4+8
    г) 6p^3-p^2+4p^3+p^2-10p^3-3p+19


    Решение: а) x^3+2x^2+7x+8x-x^3-x^2-x^2 =2x^2+15x-2x^2=15x

    если переменная равна 1, то 15*1=15

    б) 0,5y^3+2,7y^2+3,5y+6,5y-0,5y^3-2y^2-0,7y^2=10y
     если переменная равна 1, то 10*1=10
      в) 3z^4-z^2+4z+z+z^2-2z^4-z^4+8=5z+8

    если переменная равна 1, то 5z+8=13
     г) 6p^3-p^2+4p^3+p^2-10p^3-3p+19=19-3p
     если переменная равна 1, то 19-3p=16

  • №1
    постройте график линейной функции y=2x-3
    С помощью графика найдите:
    a) наименьшее и наибольшее значения финкции на отрезке [-2;1]
    б) значение переменной x при которых график функциирасположен выше оси Ox
    №2
    найдите координаты точки пересечения прямых y=-x и y=x-8
    №3
    а) найдите координаты точек пересечения графика линейного уравнения 2x-5y-10=0 c осями координат
    б) определите принадлежит ли графику данного уравнения точка М (-одна целая одна вторая; -2,6)
    №4
    а) задайте линейную функцию y=kx формулой, если известно что ее график параллелен прямой 4x+y+7=0
    б) определите, возрастает или убывает заданная вами линейная функция
    №5
    при каком значении p решением уравнения:
    -px+2y+p=0
    является пара чисел (-1;2)


    Решение: 1а) У(-2) = -7 -минимальное и У(1) = -1 - максимальное.
    1б) У> 0 при Х>1.5
    2) х-8 = - х
    2х = 8 и х = 4. Подставили в у = -х = -4.
    Точка пересечения С(4;-4) - ОТВЕТ.
    3) 2х - 5у - 10 = 0
    у = 2/5*х - 2
    Подставили Мх= - 1 1/2 и получили Му = -2,6 - точка принадлежит.
    4) 4х + у + 7 = 0 или у = -4х - 7 = kX + b.
    Параллельная прямая - одинаковый коэффициент = -4.
    Функция убывает - коэффициент k < 0.
    5) -px + 2y + p = 0 или у = р*(х - 1)/2
    р = 2*у/(х -1) = 4/(-1-1) = -4 - ОТВЕТ

    а У - - -минимальное и У - - максимальное. б У gt при Х gt . х- - х х и х . Подставили в у -х - .Точка пересечения С - - ОТВЕТ. х - у - у х - Подставили Мх - и получили Му -...
<< < 12 3 > >>