рациональное число - страница 7
Сложение и вычитание рациональных выражений \(\frac{y-b}{a^2-ab}- \frac{y-a}{ab-b^2}\)
Решение: $$ \frac{y-b}{a^2-ab}- \frac{y-a}{ab-b^2}= \frac{y-b}{a(a-b)} - \frac{y-a}{b(a-b)} =\\= \frac{yb-b^2-ay+a^2}{ab(a-b)} = \frac{(a-b)(a+b-y)}{ab(a-b)} = \frac{a+b-y}{ab} $$Докажите, что не существует рационального числа, квадрат которого равен 19
Решение: Предположим, что существует рациональное число q∈Q такое, что q²=19.
Тогда, q=√19
√19 ∉Q (не является рациональным числом)
Следовательно, наше предположение неверно и не существует такого рационального числа, квадрат которого равнялся бы 19.
Что и требовалось доказать.
Докажите, что нет такого рационального числа, квадрат которого равнялся бы 2.
Решение: Предположим, что существует какое-либо дробное число, при возведении которого в квадрат можно получить два: (p/q)^2 = 2. При этом эта дробь несократима.Запишем уравнение так: p^2 / q^2 = 2.
Умножим обе части уравнений на q^2, получим: p^2= 2q^2.
Выражение 2q^2 в любом случае должно быть четным, т. к. выполняется умножение на 2.
Значит, p^2 тоже четно.
Но известно, что квадрат нечетного числа дает нечетное число (например, 5^2 = 25), а квадрат четного – четное (4^2 = 16). Поэтому p должно иметь четное значение.
Если p четно, то его можно представить как p = 2^k. Тогда получим: (2k)^2 = 2q^2. Или 4k^2 = 2q^2.
Сократим полученное уравнение и получим: 2k^2 = q2.
Поскольку в левой части уравнения результат будет четным (т. к. происходит умножение на 2), то и q должно быть четным, чтобы его квадрат был четным.
Но вспомним,
ранее было доказано, что и p четно, изначально предполагалось, что взятая дробь p/q несократима.Если же и p, и q четные числа, то образованную ими дробь можно сократить на 2. Т. е. приходят к противоречию с условием и на этом основании делают вывод, что нет рациональной дроби, квадрат которой может быть равен 2.
Докажите, что не существует такого рационального числа, квадрат которого равен 19
Решение: Предположим существует такое p/q (несократимая дробь, а если сократима то предварительно сократим) квадрат которого равен 19
если q = 1 число целое,
проверим 4^2=16; (-4)^2 = 16; 5^2 = 25 (-5)^2 = 25
значит нет целых чисел квадрат которых равен 19, значит q неравно единице
$$ \frac{ p^{2}}{ q^{2}} = 19 $$
слева у нас несократимая дробь, а справа целое число, что невозможно. значит нет такого рац. числа, квадрат которого равен 19
Докажите что не существует такого рационального числа квадрат которого равен 7
Решение: Предположим, что оно существует! Пусть это будет а/с несократимая дробь.
Значит (а/с)² = 7
(а²) /(с²) =7
а² = с² * 7. В правой части выражение кратно 7, значит и в левой кратно 7. А это означает, что а кратно 7, т. е. а = 7к.
(7к)² с² * 7
49 к² = 7 с². Сократи на 7.
7 к² = с². Теперь в левой части число кратно 7, а значит и в правой тоже кратно 7. Значит с= 7п. Получается, что дробь а/с будет сократимой, что противоречит нашему предположению о том, что она несократимая. Значит такой дроби не существует.