найдите площадь фигуры, ограниченной графиком функции
Найдите площадь фигуры, ограниченной линиями: \( y=\frac{16}{x^2}, \\ y=2x, \\ x=4. \)
Решение:1. Найдите ту первообразную F(x) для функции f(x)=4x^3-8x, график которой проходит через точку А(1;3)
2. Вычислите площадь фигуры, ограниченной линиями у=х^2 и у=4
Решение: $$ 1) f(x) = 4x^3 - 8x; A(1;3)\\ F(x) = 4*\frac{x^4}{4} - 8*\frac{x^2}{2} + C = x^4 - 4x^2 + C $$У нас есть некоторая неопределенная первообразная, о чем нам говорит число С, его нам и надо найти, найдя его, найдем единственно нужную нам первообразную.
на даны координаты точки A(1;3) - 1 - x, 3 - y.
поэтому подставляем 3-ойку вместо значения функции, а единицу вместо значения x.
$$ F(x)=x^4 - 4x^2 + C\\ 3 = 1^4 - 4*1^2 + C\\ 3 = 1 - 4 +C\\ 3 = -3 + C\\ C = 6\\ $$
поставляем это значение в первообразную
$$ F(x)=x^4 - 4x^2 + C\\ F(x) = x^4 - 4x^2 + 6 $$
Это и есть ответ.
2)площадь этой фигуры находится как интеграл от разности графиков y=4 и у=х^2, при чем ограничивается этот интеграл точками пересечениями этих графиков.
x^2 = 4
x = 2; - 2
$$ S_= \int_{-2}^{2} {(4-x^2)} \, dx = (4x - \frac{x^3}{3})| =\\ = (8 - \frac{8}{3}) - (-8 - \frac{-8}{3}) = 10\frac{2}{3} $$
№1. вычислите интеграл \( \int\limits^1_-1{(3 x^{2} -7x+5)dx} \, \) (нижний предел -1)
№2. Для функции f(x)=4x+\( \frac{1}{x^{2} } \) найдите первообразную график которой проходит через точку M(-1:4)
№3. вычислите (предварительно сделав рисунок) площадь фигуры ограниченной линиями
y=\( x^{2} \)-4x+5, у=0,x=0.x=4
Решение: 1)
$$ \int\limits^1_{-1} {(3x^2-7x+5)} \, dx =(x^3- \frac{7}{2}x^2+5x)|^1_{-1}= \\ =1- \frac{7}{2} +5+1+ \frac{7}{2} +5=12. $$
2)
$$ F(x)=2x^2- \frac{1}{x} +C $$
F(-1) = 4 => 2+1+C=4 => C=1.
Итак, $$ F(x) = 2x^2- \frac{1}{x} +1. $$
3) Рисунок во вложении
$$ S_{OABC}=\int\limits^4_{0} {(x^2-4x+5)} \, dx =( \frac{x^3}{3} -2x^2+5x)|^4_0= \\ = \frac{64}{3} -32+20=9 \frac{1}{3} $$В прямоугольник со сторонами 16см и 18см вписывается ромб, вершины которого являются серединами сторон прямоугольника. В полученный ромб аналогичным образом вписывается прямоугольник, а в него снова ромб и так далее. Докажите, что площади полученных фигур образуют геометрическую прогрессию. Найдите знаменатель этой прогрессии
Решение: S₁(данного прямоугольника)=a·b=18·16;
S₂(ромба вписанного в данный прямоугольник)=(1/2)·D₁·D₂=(1/2)·16·18;
S₃=(a/2)(b/2)=(18·16)/4;
S₄=(1/2)·d₁·d₂=(1/2)·(16/2)·(18/2)=(16·18)/8;
q=S₄:S₃=S₃:S₂=S₂:S₁=1/2.
О т в е т. q=1/2.
Найдите площадь фигуры, ограниченной линией
модуль их Х + модуль из У=6
Решение: |x|+|y|=6, график так заданной функции будет квадрат с вершинами (6;0)(0;6)(-6;0)(0;-6), что легко установить построив графики данной функции во всех 4 четвертях (квадрантах)
а площадь такого квадрата можно найти из того, что диагональ равна 12
, ну например из теоремы Пифагора следует, что квадрат диагонали квадрата равен удвоенному квадрату стороны, а значит удвоенный квадрат стороны(площадь) равна половине квадрата диагонали
площадь равна 12*12/2=12*6=72
Ответ:72 квадратных единицы
Тема: Вычисление площадей плоских фигур с помощью определенного интеграла.
Пример 1
2x-3y+6=0 y=0 ; x=3
Пример 2
y=-x^2+6x-5 y=0 ; x=2 ; x=3
Решение: 1. 2x-3y+6=0
3y = 2x+6
y = 2/3x+2
Точка пересечения графиков (приравниваем функции).
2/3x+2 = 0
2/3x = -2
x = -3
M(-3; 0)
Фигура сверху ограничена прямой y = 2/3x+2, снизу прямой y=0, слева точкой x=-3, справа прямой x=3.
$$ \int_{-3}^3(\frac23x+2-0)dx=\int_{-3}^3(\frac23x+2)dx=\left.(\frac13x^2+2x)\right|_{-3}^3=\\=\frac13(3)^2+2\cdot3-\frac13(-3)^2-2(-3)=\frac93+6-\frac93+6=12 $$
2. Сверху фигура ограничена параболой y=-x^2+6x-5, снизу прямой y=0, слева и справа прямыми x=2 и x=3 соответственно.
$$ \int_2^3(-x^2+6x-5-0)dx=\int_2^3(-x^2+6x-5)dx=\\=\left.(-\frac13x^3+3x^2-5x)\right|_2^3=-\frac{(3)^3}3+3(3)^2-5\cdot3+\frac{(2)^3}3-3(2)^2+5\cdot2=\\=-9+27-15+\frac83-12+10=1+\frac83=1+2\frac23=3\frac23 $$
Решается просто: сначала нарисуйте заданные линии (можно схематически), затем определите левую и правую границы (они либо заданы, как в примере 2, либо находятся, как точки пересечения графиков). Эти границы будут пределами интегрирования. Под знаком интеграла вычитаем из "верхней" (график которой выше) функции "нижнюю" (график которой ниже).Вычислите площадь фигуры, ограниченной линиями: а) y=4x-x^2; e=4-x; б) y=x^2, y=2x; в) y=x^2-4x+4, y=4-x^2; г) y=x^2 -2x+2, y=2+6x-x^2;
Решение: 1) пределы интегрирования:
$$ 4x-x^{2}=4-x \\ 4x-x^{2}-4+x=0 \\ x^{2}-5x+4=0, D=25-16=9>0 \\ x_{1}= \frac{5-3}{2}=1 \\ x_{2}= \frac{5+3}{2}=4 \\ S= \int\limits^4_1 {(4x-x^{2}-4+x)} \\, dx= \int\limits^4_1 {(5x-x^{2}-4)} \\, dx= \frac{5x^{2}}{2}-\frac{x^{3}}{3}-4x=\frac{5*4^{2}}{2}-\frac{4^{3}}{3}-4*4-(\frac{5}{2}-\frac{1}{3}-4)=\\=40-\frac{64}{3}-16-\frac{5}{2}+\frac{1}{3}+4=28-\frac{63}{3}-\frac{5}{2}=\\=28-\frac{63*2+15}{6}=28-23.5=4.5 $$
2) $$ x^{2}=2x \\ x*(x-2)=0 \\ x_{1}=0, x_{2}=2 \\ S= \int\limits^2_0 {(2x-x^{2})} \, dx=\\= x^{2}-\frac{x^{3}}{3}=2^{2}-\frac{2^{3}}{3}=\frac{12-8}{3}=\\=\frac{4}{3} $$
3) $$ x^{2}-4x+4=4-x^{2} \\ 2x^{2}-4x=0 \\ 2x*(x-2)=0 \\ x_{1}=0, x_{2}=2 \\ S= \int\limits^2_0 {(4-x^{2}-x^{2}+4x-4)} \, dx=\int\limits^2_0 {(-2x^{2}+4x)} \, dx= -\frac{2x^{3}}{3}+2x^{2}=\\=-\frac{2*2^{3}}{3}+2*2^{2}=8-\frac{16}{3}=\\=\frac{24-16}{3}=\frac{8}{3} $$
4) $$ x^{2}-2x+2=2+6x-x^{2} \\ 2x^{2}-8x=0 \\ 2x*(x-4)=0 \\ x_{1}=0, x_{2}=4 \\ S= \int\limits^4_0 {(2+6x-x^{2}-x^{2}+2x-2)} \\, dx=\int\limits^4_0 {(8x-2x^{2})} \\, dx=4x^{2}- \frac{2x^{3}}{3}=4*4^{2}-\frac{2*4^{3}}{3}=\\=64-\frac{64*2}{3}=\frac{64*3-64*2}{3}=\frac{64*(3-2)}{3}=\frac{64}{3} $$
Желтым закрашена искомая площадь
найти площадь фигуры ограниченной функциями у=х^2,y=2x. через интеграл нужно решить
Решение: Построим график. Будет видно, что площадь надо искать на промежутке [0;2]. В данном случаеf(x) = 2x
g(x) = x^2
Площадь данной фигуры находим по формуле
S = $$ \int\limits^b_a {(f(x) - g(x))} \, dx $$
Теперь подставляем и находим
S = $$ \int\limits^2_0 {(2x - x^2)} \, dx = \frac{2x^2}{2} - \frac{x^3}{3} = x^2 - \frac{x^3}{3} = 2^2 - \frac{2^3}{3} = 4 - \frac{8}{3} = 1\frac{1}{3} $$ ед^2
Запишите интеграл, с помощью которого можно найти объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной дугой АВ гиперболы у=6/(х-1)-1, если А(0,5), В(5,0)
Решение: Рассмотрим точку В(5;0). При х=5 у=6/(5-1)-1=1,5-1=0,5. То есть криволинейная трапеция ограничена линиями х=0, y=5 (точка А), у=0,5 (точка В) и y=6/(x-1)-1.
Для нахождения объёма тела вращения вокруг оси ОY необходимо перейти к обратной функции, грубо говоря нужно выразить "икс" через "игрек":
y=6/(x-1)-1=(6-(x-1))/(x-1)=(7-x)/(x-1)
y(x-1)=7-x
yx-y-7+x=0
x(y+1)=7+y
x=(7+y)/(y+1)=6/(y+1)+1
Теперь подставляем в формулу объема для тела полученного вращением
$$ V= \pi \int\limits^a_b {f^2(x)} \, dx $$
В данном случае
$$ V= \pi \int\limits^5_ \frac{1}{2} {( \frac{6}{y+1)}+1)^2 } \, dx $$
Задание найдите площадь фигуры ограниченной линиями у=х^3 y=0 x= -3 x=1 площадь нужно найти через интеграл
Решение: Здесь разбивается на 2 интеграла
И сумма будет положительный
Нижний интеграл брать с минусом не надо, его просто складывают с верхним
См. рисунокS =S₁+S₂= интеграл (0 - x³)dx + интеграл (x³ -0)dx =
a₁ = - 3, b₁ =0 a₂ = 0, b2 =1
-(x^4)/4 | a₁ = - 3, b₁ =0 +(x^4)/4 | a₂ = 0, b2 =1 = -((0^4)/4 -((-3)^4)/4) +(1^4)/4 -(0^4)/4 =
=81/4 +1/4 =82/4 =20,5.
* * * интеграл f(x)dx =F(x) | a ->b =F(b) - F(a) * * *
a ->b