Комплексные числа: сложение и вычитание
Сумма векторов представляет собой замыкающую многоугольника, составленного из слагаемых векторов. Принимая во внимание, что проекция замыкающей равна сумме проекций составляющих, мы приходим к следующему определению сложения комплексных чисел:
Нетрудно видеть, что сумма комплексных чисел не зависит от порядка слагаемых (переместительный закон) и что слагаемые можно объединять в группы (сочетательный закон), ибо такими свойствами обладают сумма вещественных чисел ak и сумма вещественных чисел bk
Пользуясь определением сложения можно утверждать, что комплексное число a + bi, есть сумма вещественного числа a и чисто мнимого числа bi, т.е. a + bi = (a + 0i ) + (0 + bi )
Вычитание определяется как действие, обратное сложению, т.е. разность
определяется из условия
Вычитание комплексного числа (a2 + b2i ), как мы видим, равносильно сложению уменьшаемого (a1 + b1i ) и комплексного числа (-a2 - b2i ). Это соответствует следующему: вычитание векторов сводится к сложению вектора уменьшаемого с вектором, по величине равным вычитаемому, а по направлению ему противоположным.
Рассмотрим вектор \(\overrightarrow{A_{2}A_{1}}\), начальной точке A2 которого соответствует комплексное число a2 + b2i и концу A1 - число a1 + b1i. Этот вектор представляет собой, очевидно, разность векторов \(\overrightarrow{OA_1}\) и \(\overrightarrow{OA_2}\) и, следовательно ему соответствует комплексное число
Установим теперь свойства модуля суммы и разности двух комплексных чисел. Принимая во внимание, что модуль комплексного числа равен длине соответствующего этому числу вектора и что одна сторона треугольника короче суммы двух других, получим:
Доказанное свойство имеет место и в случае любого числа слагаемых:
Принимая во внимание, что сторона треугольника больше разности двух других сторон, можем, кроме того написать: