решить логарифмическое неравенство
Неравенство с логарифмом: \( 3^{^{log}2^{x^{2}}}+2 \cdot |x|^{^{log}2^{9}} \leq 3 \cdot (\frac{1}{3})^{^{log}0,5^{(2x+3)}} \)
Решение: $$ 3^{log_{2}x^2}+2|x|^{log_{2}9} \leq 3^{1-log(2x+3)}\\ $$
По свойству логарифма
$$ x \geq 0\\ 3^{log_{2}x^2}+2*9^{log_{2}x} \leq 3 ^{1-log_{0.5}(2x+3)} \\ 3^{log_{2}x^2}+2*3^{log_{2}x^2} \leq 3^{1-log_{0.5}(2x+3)}\\ 3^{log_{2}x^2+1} \leq 3^{1-log_{0.5}(2x+3)} \\ log_{2}x^2+1 \leq 1+log_{2}(2x+3) \\ log_{2}x^2 \leq log_{2}(2x+3) \\ x^2 \leq 2x+3\ x^2-2x-3 \leq 0 \\ (x+1)(x-3) \leq 0 \\ |-1;3| = > |0;3| $$
Ответ $$ |0;3| $$
Решить логарифмическое неравенство: \( \log_{0,5}(3x-4) > \log_{0,5}(5x+4)\)
Решение: 1. Так как основания у логарифмов одинаковые, при этом 0,5 < 1, то меняем знак:
3x-4>5x+4
Переносим известные в вправо, неизвестные влево, так удобнее в нашем случае:
5x-3x< - 4 - 4 (Обращаем внимание на знак, ставим <, так по отношению к правой стороне стоит именно этот знак)
2x< - 8
x< - 2
Ответ: х∈(-∞;-2)Решить логарифмическое неравенство \(\log_3(2x^2-9x+4) \leq 2\log_3(x+2)\)
Решение: $$ \log_3(2x^2-9x+4) \leq 2\log_3(x+2) \\ \log_3(2x^2-9x+4) \leq \log_3(x+2)^2 $$
ОДЗ: $$ \left \{ {{2x^2-9x+4>0} \atop {x+2>0}} \right. \to x \in (-2;+0.5)\cup(4;+\infty) \\ 2x^2-9x+4 \leq x^2+4x+4 \\ x^2-13x \leq 0 $$
x1=0
x2=13
Ответ: $$ [0;0.5)\cup(4;13] $$Неравенство с логарифмами, у которых одинаковое основание.
Т. к. основание равно 3>1, то подлогарифмические выражения сравниваются с тем же знаком.
$$ 2log_{3}(x+2)=log_{3}(x+2)^{2} \\ 2x^{2}-9x+4 \leq (x+2)^{2} \\ 2x^{2}-9x+4 \leq x^{2}+4x+4 \\ x^{2}-13x \leq 0 \\ x*(x-13) \leq 0 \\ 0 \leq x \leq 13 $$
ОДЗ логарифмов:
1) $$ 2x^{2}-9x+4>0 \\ 2x^{2}-9x+4=0, D=81-4*2*4=49 \\ x_{1}= \frac{9-7}{4}=0.5 \\ x_{2}= \frac{9+7}{4}=4 \\ x<0.5 \\ x>4 $$
2) $$ x+2>0 \\ x>-2 $$
Объединим решения ОДЗ:
$$ -24 $$
Наложим условие ОДЗ на наше решение:
$$ 0 \leq x<0.5 \\ 4Ответ: x∈[0; 0.5) U (4; 13] Решите логарифмическое неравенство \(2\log_5^2x^2+5\log_525x -8 \geq 0\)
Решение: $$ log^2_2x^2-15log_22x+11 \leq 0|x>0\\(2log_2x)^2-15log_22-15log_2x+11 \leq 0\\4log^2_2x-15log_2x+11-15 \leq 0\\4log^2_2x-15log_2x-4 \leq 0\\t=log_2x\\4t^2-15t-4 \leq 0\\D=(-15)^2-4*4*(-4)=225+64=289=17^2\\t_1=(15+17)/8=32/8=4\\t_2(15-17)/8=-2/8=-1/4 \\ 4(t-4)(t+1/4) \leq 0\\ t\in[-1/4;4]\\\\log_2x \geq -1/4\\x \geq \frac{1}{ \sqrt[4]{2} }\\\\log_2x \leq 4\\x \leq 16\\\\x\in[ \frac{1}{ \sqrt[4]{2} };16] $$
$$ 2\log_5^2x^2+5\log_525x-8\geq0 $$
1. Рассмотрим функцию
$$ y=2\log_5^2x^2+5\log_525x-8 \\ x>0 \\ D(y)=(0;+\infty) $$
2. Нули функции
$$ 2\log_5^2x^2+5\log_525x-8=0 $$
Воспользуемся свойством логарифмов $$ \log_5x^2=2\log_5|x| \\ 2(2\log_5^2x)^2+5\log_525x-8=0 \\ 8\log_5^2x+5\log_525x-8=0 $$
Логарифм произведения равен сумме логарифмов
$$ 8\log_5^2x+10+5\log_5x-8=0 $$
Сделаем замену переменных
Пусть $$ \log_5x=a $$, тогда
$$ 8a^2+5a+10-8=0 \\ 8a^2+5a+2=0 \\ D=b^2-4ac=-39 $$
Дискриминант отрицателен, значит уравнение корней не имеет.
(0)_______+______>
Ответ: $$ x \in (0;+\infty) \\ \log_2^2x^2-15\log_22x+11 \leq 0 $$
Рассмотрим функцию
$$ y=\log_2^2x^2-15\log_22x+11 $$
Область определения функции $$ (0;+\infty) $$
Нули функции
$$ \log_2^2x^2-15\log_22x+11=0 \\ (2\log_2x)^2-15\log_22x+11=0 \\ 4\log_2^2x-15(1+\log_2x)+11=0 $$
Пусть $$ \log_2x=a $$, тогда получаем что
$$ 4a^2-15(1+a)+11=0 \\ 4a^2-15a-4=0 $$
Как обычно через дискриминант
$$ D=b^2-4ac=289; \sqrt{D} =17 \\ a_1=- \frac{1}{4} \\ a_2=4 $$
Возвращаемся к замене
$$ \left[\begin{array}{ccc}\log_2x=- \frac{1}{4}\\\log_2x=4 \end{array}\right. \to \left[\begin{array}{ccc}x_1= \frac{ \sqrt[4]{8} }{2}\\ x_2=16 \end{array}\right. $$
Полученное решение отметим на промежутке
(0)____-____$$ [\frac{ \sqrt[4]{8} }{2}] $$___+___[16]___+____>
Ответ: $$ [\frac{ \sqrt[4]{8} }{2};16] $$
Решите логарифмическое неравенство \(\log_2\frac{4-x}{x-2}\leq \log_2\frac{1}{x-2}\)
Решение: ОДЗ: $$ \frac{4-x}{x-2}>0 \\ \frac{1}{x-2}>0 $$
Логарифмическая функция с основанием 2 - возрастает. Большему значению функции соответствует большее значение аргумента.
$$ \frac{4-x}{x-2} \leq \frac{1}{x-2} $$
Учитывая, что
$$ \frac{1}{x-2} \geq \frac{4-x}{x-2} >0 $$
второе неравенство в нахождении ОДЗ $$ \frac{1}{x-2}>0 $$
оказывается автоматически выполнено
Решаем первое неравенство
$$ \frac{1}{x-2} \geq \frac{4-x}{x-2} \\\frac{1}{x-2} - \frac{4-x}{x-2} \geq 0 \\ \frac{1-4+x}{x-2} \geq 0 \\ \frac{x-3}{x-2} \geq 0 $$
\\\\\\\\\\\\\\\\\\ //////////////////////
-(2)-[3]-
Решаем первое неравенство
$$ \frac{4-x}{x-2} >0 $$
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-(2)-(4)-
Пересечение двух ответов
[3;4)