разложите на множители числитель и знаменатель дроби
5х^2+14х-3 (разложить на множители)
Решение: 5х²+14х-3 = 5х² +15х-х -3 = (5х²+15х)-(х+3) = 5х(х+3)-(х+3) = (х+3)(5х-1)
сначала 14 х разложили на слагаемые 14х = 15х -х
потом сгруппировали (5х² +15х) и (х+3)
потом из первой скобки вынесли за скобку общий множитель 5х
а потом еще раз вынесли общий множитель скобку (х+3)
в итоге получили два множителя (х+3) и (5х-1)Как разложить на множители квадратный трехчлен, если дискриминант равен нулю.
Решение: Находите дискриминант. ax^2+bx+c=0 допустим твое уравнение. значит дискриминант равен D=b^2-4ac. если дискриминант больше нуля,то получается два корня,которые находятся по формуле x1=(-b+корень из D)/2a или x2=(-b-корень из D)/2a. находите корни. разложенный на простые множители кв трехчлен = a(x-x1)(x-x2). все
если D=0,то один корень,находится по формуле -b/2a. тогда на простые множители раскладывается как a(x-корень уравнения)(x-корень уравнения). (тк этот корень уравнения считается за два)
если D меньше нуля,то корней нет и трехчлен не раскладывается на множители и просто оставляете такРазложите на множители квадратный трехчлен: 1) x^2 + x - 12; 2) 10y^2 - 9y + 2; 3) 6x^2 - 216; (через дискриминант)
Решение: 1) X^2 + X - 12 = ( X - 3 )* ( X + 4 )
D = 1^2 - 4*1*(-12) = 1 + 48 = 49 ; V D = 7
X1 = ( - 1 + 7 ) \ 2 = 6 \ 2 = 3
X2 = ( - 8 ) \ 2 = ( - 4)
2) 10Y^2 - 9Y + 2 = ( Y - 0.5 ) * ( Y - 0.4 )
D = 81 - 4*10*2 = 81 - 80 = 1 ; V D = 1
Y1 = ( 9 + 1 ) \ 20 = 10\20 = 0.5
Y2 = 8 \ 20 = 0.4
3) 6X^2 - 216 = 6 * ( X^2 - 36 ) = 6 * ( X - 6 ) * ( X + 6 )Найдите корни квадратного трехчлена и разложите их на множители и найдите дискриминант а) \( y2-6y+5 \) б) \( x2+14x+24 \) в) \( -y2+14y=33 \) г) \( -x2-10x-16 \) д) \( x2-8x-48 \) e) \( y2+16y+55 \) ж) \( x2-24x+144 \) з) \( -y2+18- 81 \)
Решение: Б) D=14*14-4*24=196-96=100
x1=(-14+10)/2=-2
x2=(-14-10)/2=-12
разложим на множители:
(х+2)(х+12)
в) -y2+14y-33=0
D=14*14-4*33=196-132=64
x1=(-14+8)/2=-3
x2=(-14-8)/2=-11
разложим на множители:
(х+3)(х+11)
Для разложения на множители используем формулу:
ax2+bx+c=a(x-x1)(x-x2) если коэффициент а равен 1, то перед скобкой ничего не надо, а в скобках пишете х минус твой корень. если корень с минусом, то в скобке будет плюс.Разложите на множители трёхчлен: 16а^2+24а+9 Через дискриминат
Решение: 16a² + 24a + 9 = 0
D = b² - 4ac = 24² - 4 × 16 × 9 = 576 - 576 = 0 - имеет один корень.
x = - b / 2a
x = - 24 / 32 = - 0,75
Раскладываем по формуле : a ( x - x₁) ( x - x₂)
16 ( a + 0,75) ( a + 0,75)
или
= 16(a + 3/4)(a + 3/4) = (4a + 3)(4a + 3) = (4a + 3)^2 (в квадрате)A*4 (степени) + a*2 (степени) + 1 = a*4 (степени) +2a*3 (степени) + a*2 (степени) - 1 надо разложить на множители
Решение: A^4+2a^3+a^2-1 =((a^2)^2+2a^2+1)-a^2=(a^2+1)^2-a^2=(a^2+1-a)(a^2+1+a)
$$ a^{4} + a^{2} +1= (a^{2} )^{2} +2*a^{2}*1+ 1^{2} -a^2=(a^2+1)^2-a^2= $$
$$ =(a^2+1-a)*(a^2+1-a) $$
$$ a^4+2a^3+a^2-1=((a^2)^2+2*a*a^2+a^2)-1^2=(a^2+a)^2-1^2= $$
$$ =(a^2+a-1)*(a^2+a+1) $$
Использовались 2 формулы:
$$ (a +b)^2=a^2+2ab+b^2 $$
$$ a^2-b^2=(a-b)(a+b) $$
А в первом случае прибавили и вычли одно выражение $$ a^2 $$Разложите на множители. 81а в 4 степени -1; у в квадрате -х в квадрате -6х-9;
с в кубе-16с; 3а в квадрате -6аб +3б в квадрате
Решение:
81a^4 - 1 = (9a^ -1)x (9a^2 +1) = (9a - 1)( 9a +1)y^2 - x^2 -6x -9= y^2 -(x +3)^2 = ( y - x - 3)(y + x + 3)
c^3 -16c = c( c^2 - 4) = c (c - 2)(c + 2)
3a^2 -6ab +3b^2 = 3( a^2 -2ab +b^2) = 3(a -b)^2
Разложите на множители:
с^2-d^2+6c+9
x^2-y^2-10y-25
x^2-y^2-8x+16
9-p^2+q²-6q
a^3+a^2b-ab^2-b^3
^-степень
Решение: с²-d²+6c+9=(c²+6c+9)-d²=(c+3)²-d²=(c+3-d)(c+3+d)
x²-y²-10y-25=x²-(y²+10y+25)=x²-(y+5)²=(x-(y+5))(x+y+5)=(x-y-5)(x+y+5)
x²-y²-8x+16=x²-8x+16-y²=(x-4)²-y²=(x-4-y)(x-4+y)
9-p²+q²-6q=9-6q+q²-p²=(3-q)²-p²=(3-q-p)(3-q+p)
a³+a²b-ab²-b³=a³-b³+ab(a-b)=(a-b)(a²+ab+b²+ab)=(a-b)(a+b)²A 3 -ab- a 2 b+a 2 разложите на множители ( цифра после пробела это степень) x 2 y-x 2 -xy+x 3
ac 2-c 2 -ac+c
x 2 y -xy - x 2 +x
16x 2 -24xy+9y 2 -4x+3y
4c 2 -20ac+25a 2+5a-2c
2x+y+y 2 -4x 2
a 2 -9b 2+12bc
a-3b+9b 2 -a 2
1-4x 2 -4xy-y 2
Решение: $$ a^3 -ab- a^2 b+a^2=a^2(a+1)-ab(a+1)=(a^2-ab)(a+1)=\\=a(a-b)(a+1).\\ x^2 y-x^2 -xy+x^3=x^2(x-1)+xy(x-1)=(x^2+xy)(x-1)=\\=x(x+y)(x-1).\\ ac^2-c^2 -ac+c=c^2(a-1)-c(a-1)=(c^2-c)(a-1)=\\=c(c-1)(a-1).\\x^2 y -xy - x^2 +x=x^2(y-1)-x(y-1)=(x^2-x)(y-1)=\\=x(x-1)(y-1).\\16x^2 -24xy+9y^2 -4x+3y=(4x-3y)^2-(4x-3y)=\\=(4x-3y)(4x-3y-1).\\4c^2 -20ac+25a^2+5a-2c=(2c-5a)^2-(2c-5a)=\\=(2c-5a)(2c-5a-1). $$
$$ 2x+y+y^2 -4x^2=(2x+y)+(y-2x)(y+2x)=\\=(2x+y)(1+y-2x).\\ a^2 -9b^2+12bc=? \\ a-3b+9b^2 -a^2=(a-3b)+(3b-a)(3b+a)=\\=(3b-a)(3b+a-1).\\ 1-4x^2 -4xy-y^2=1-(4x^2+4xy+y^2)=1-(2x+y)^2=\\=(1-2x-y)(1+2x+y). $$
№1. 2х+2у-х2(вторая степень)-ху разложите на множители№2. сторона квадрата на 2см меньше одной из сторон прямоугольника и на 3 см больше другой.Найдите сторону квадрата,если его площадь на 10 см2 больше площади прямоугольника.
Решение: 1). 2х+2у-х² -xy= (2x-x²)+(2y-xy) = x(2-x)+y(2-x)=(2-x)(x+y)2). x-сторона квадрата, тогда (х+2) - одна сторона прямоугольника, и (х-3)-другая сторона прямоугольника.
Sквадрата = х²
Sпрямоугольника=(х+2)(х-3)
S квадрата меньше Sпрямоуг. на 10см² больше, можно составить уравнение:
х²-10=(х+2)(х-3)
х²-10=х²+2х-3х-6
х=4 (см)-сторона квадрата.
Ответ: сторона квадрата равна 4 см