упрощение выражений »

упростите выражение - страница 5

  • Упростите выражение) 0.8а в -6степени b в 8 степени умножить 5а в десятой степени b в -8 степени.


    Решение: с отрицательным показателем числа мы перемещаем в чзнаменатьль, а положительные оставляем в числителе, значит а в 6 степени и а в 10 степени сокращаются, так же сокращаются б в 8 степени и б в восьмой степени, и остается ответ:

    о.8а в 8 степени

    0.8а в -6степени b в 8 степени умножить 5а в десятой степени b в -8 степени. 

    = 0,8 a^(-6+10)b(-8+8)=0.8a^4b^0=0.8a^4

  • Отрицательная степень. Задача: Упростите выражение напиши подробные решение \( (\frac{a^{-3}b^4}{9})^{-2}*(\frac{3}{a^{-2}b^3})^{-3} \)


    Решение:

    $$ (\frac{a^{-3}b^4}{9})^{-2}*(\frac{3}{a^{-2}b^3})^{-3}=\\=\frac{a^6b^{-8}}{9^{-2}}*\frac{3^{-3}}{a^6b^{-9}}=\frac{9^2a^6b^9}{3^3a^6b^8}=\frac{3^4b}{3^3}=3b $$

  • 1) Упростите выражение а)10х(2 степень)у * (-3ху(2 степень))(3 степень),б)(х+4у)(2 степень)-(4у-х)(х+4у)
    2) Разложите на множители а) ав(3 степень)-9а(3 степень)в,б)-25а+10а(2 степень)-а(2 степень)
    3) Решите уравнение 5х-4 разделить на 4 - х+2 разделить на 3 равняется 2
    4) Задача: Над выполнением заказа ученик работал 8 часов, а мастер выполнил такой же заказ за 6 часов. Сколько деталей составляет заказ, если мастер и ученик за 1 час вместе изготовляют 7 деталей.


    Решение: 1) а) 10х2у * (-3ху2)3 = 10х2у *(-27х3у6) = -270х5у7

    б) (х+4у)2 - (4у-х)(х+4у) = х2+8ху+16у2 - 16у2 +х2 = 2х2 +8ху

    2) а) ав3 - 9а3в = ав (в2 - 9а2) = ав (в-3а)(в+3а)

    б)  -25а +10а2 - а2 = -25а +9а2 = а (9а - 25)

    3)

    (5х-4)/4 - (x+2)/3 = 2    I *12

    3(5x-4) - 4(x+2) = 24

    15x - 12 - 4x - 8 = 24

    11x = 44

    x=4

    $$ 1) \\ a) \\ 10x^2y(-3xy^2)^3 = 10x^2y(-27x^3y^6) =\\= -270x^5y^7\ b) (x+4y)^2 - (4y-x)(x+4y) = \\= (x+4y)((x+4y) - (4y-x)) =\\= (x+4y)*2x = 2x^2 + 8xy $$

    2) $$ a) \\ ab^3 - 9a^3b = ab(b^2 - 9a^2) \\ b) -25a+10a^2-a^2 = -25a+9a^2 = \\ a(9a - 25) $$

    3) $$ (5x-4)/4 - (x +2)/3 = 2 \\ (5x-4)/4 - (x +2)/3 = 2 | * 12 \\ (5x-4)*3 - (x +2)*4 = 24 \\ 15x - 12 - 4x - 8 = 24 \\ 11x = 44 \\ x = 4 $$

    4) 2*x = 6*m + 8*u

        x - количество деталей в заказе.

        m - количество деталей, которое производит мастер в час

        u - количество деталей, которое производит ученик в час

        x = 6*m

        x = 8*u

        7 = m + u

        2*x = 6*m + 6*u + 2*u

        2*x = 6*7 + 2*u

        (6*7 + 2*u)/2 = 8*u

        3*7 + u = 8*u

        u = 3  детали в час

        7 = m + 3

        m = 4 детали в час

       Ответ: x = 24 детали.

  • Упростите выражение: а) 1/x2y-xy2 - 3/x3-y3 б)10/x2-10x+25 + 10/x2-25 + 1/x+5 в)5x-1/x2-1 + 2/1-x - 3x/x+1 /- дробь 2,3-степень 1,3,10,5,2- коэффициенты.


    Решение: а) $$ \frac{1}{x^2y-xy^2} - \frac{3}{x^3-y^3}=\frac{1}{xy(x-y)} - \frac{3}{(x-y)(x^2+xy+y^2)}=\\=\frac{x^2+xy+y^2-3xy}{xy(x-y)(x^2+xy+y^2)}=\frac{x^2-2xy+y^2}{xy(x-y)(x^2+xy+y^2)}=\\=\frac{(x-y)^2}{xy(x-y)(x^2+xy+y^2)}=\frac{x-y}{xy(x^2+xy+y^2)} $$

    б) 
    $$ \frac{10}{x^2-10x+25} + \frac{10}{x^2-25} + \frac{1}{x+5}=\frac{10}{(x-5)^2} + \frac{10}{(x-5)(x+5)} + \frac{1}{x+5}=\\= \frac{10(x+5)+10(x-5)+(x-5)^2}{(x+5)(x-5)^2}=\frac{10x+50+10x-50+x^2-10x+25}{(x+5)(x-5)^2}=\\=\frac{x^2+10x+25}{(x+5)(x-5)^2}=\frac{(x+5)^2}{(x+5)(x-5)^2}=\frac{x+5}{(x-5)^2} $$

    в) 
    $$ \frac{5x-1}{x^2-1}+\frac{2}{1-x}-\frac{3x}{x+1}=\frac{5x-1}{(x-1)(x+1)}-\frac{2}{x-1}-\frac{3x}{x+1}=\\=\frac{5x-1-2(x+1)-3x(x-1)}{(x-1)(x+1)}=\frac{5x-1-2x-2-3x^2+3x}{(x-1)(x+1)}=\\=\frac{-3x^2+6x-3}{(x-1)(x+1)}=-\frac{3(x^2-2x+1)}{(x-1)(x+1)}=-\frac{3(x-1)^2}{(x-1)(x+1)}=\\=-\frac{3(x-1)}{x+1}= $$

  • Представить квадрат двучлена в виде многочлена: (9-2р^4)^2 разложить трёхчлен на множители: 36а^2-12ba+b^2
    разложите на множители: с^2 n^-144
    представить квадрат двучлена в виде многочлена: (2b+3m)^2
    представить квадрат двучлена в виде многочлена:(р+6)^2
    упростите выражение: a(b-c)+b(c-a)-c(b-a)
    разложите на множители: (4m+6)^2-9
    разложите на множители: а^2 b^4 -16
    выполните умножение: (3+d) (3-d)
    представьте квадрат двучлена в виде многочлена:(5-p)^2
    выполните умножение:(10c-11k) (10c+11k)

    ^-это степень.


    Решение: 1)81-36p^4+4p^8
    2)(6a-b)(6a-b)
    3)(cn-12)(cn+12)
    4)4b²+12bm+9m²
    5)p²+12p+36
    6)ab-ac+bc-ab-bc+ac=0
    7)(4m+6-3)(4m+6+3)=(4m+3)(4m+9)
    8)(ab²-4)(ab²+4)
    9)9-d²
    10)25-10p+p²
    11)100c²-121k²

    С помощью формул сокращенного умножения

<< < 345 6 7 > >>