прогрессия »

бесконечная прогрессия - страница 7

  • Сумма членов бесконечной геометрической прогрессии равна 3/4 а сумма кубов ее членов равна 27/208. Найдите сумму квадратов членов прогрессии


    Решение: Скорее всего, здесь речь идет об убывающей геометрической прогрессии. Для убывающей геометрической прогрессии Sn -> b1 / (1-q)

    b1 / (1-q) = 3/4 ___ 4b1 = 3(1-q)
    и сумма кубов тоже будет убывающей. => Sn3 -> (b1)^3 / (1-q^3)

    (b1)^3 / (1-q^3) = 27/208

    27(1-q)^3 / (64(1-q^3)) = 27/208

    (1-q)^3 / ((1-q)(1+q+q^2)) = 4/13

    (1-q)^2 / (1+q+q^2) = 4/13

    13(1-2q+q^2) = 4(1+q+q^2)

    13-26q+13q^2 - 4-4q-4q^2 = 0

    3q^2 - 10q + 3 = 0

    D = 100 - 4*9 = 64

    q1 = (10 + 8)/6 = 3 ___ q2 = (10 - 8)/6 = 1/3

    b1 = 1/2

    Сумма квадратов членов прогрессии = (b1)^2 / (1-q^2) = 1/4 : 8/9 = 1/4 * 9/8 = 9/32

  • Сумма членов бесконечно убывающей геометрической прогрессии равна 6. а сумма квадратов ее членов равна 7.2. найти номер члена этой прогрессии равной 64/243


    Решение: Пусть : b1-первый член,q -коэффициент прогрессии. Тогда квадраты его членов тоже образуют геометрическую прогрессию: b1’=b1^2,q’=q^2. Тогда: b1/(1-q)=6. b1^2/(1-q^2)=7,2 b1^2/(1-q)^2=36 делим второе на третье: (1-q)^2/(1-q^2)=0,2 тк (q≠1 при бесконечно убывающей прогрессии, то имеем право сократить) (1-q)/(1+q)=0,2 1-q=0,2+0,2q 0,8=1,2q q=0,8/1,2=8/12=2/3 b1/(1- 2/3)=6 b1*3=6 b1=2 Ищем номер члена 64/243 64/243=2*(2/3)^n 32/243=(2/3)^n n=5. Ответ:5

  • Сумма членов некоторой бесконечно убывающей геометрической прогрессии равна сумме квадратов ее членов и равна S. Может ли в этом случае S равняться 1 ?


    Решение: Положим что S=1. Пусть геометрическая прогрессия с первым членом b и знаменателем q. Тогда квадраты ее членов тоже являются геометрической прогрессией с первым членом b^2 и знаменателем q^2 соответственно. Тогда: S=b/(1-q)=b^2/(1-q^2)=1 b/(1-q)=1. 1)b^2/(1-q)^2=1 (возвели в квадрат) 2)b^2/(1-q^2)=1 Делим 1) на 2) (1-q^2)/(1-q)^2=1 (1-q)*(1+q)/(1-q)*(1-q)=1 (1+q)/(1-q)=1 1+q=1-q q=0. То есть если такая прогрессия существует, то ее знаменатель равен 0. Другими словами эта прогрессия имеет один единственный ненулевой член b=1, все остальные члены равны 0. Но вот можно ли это назвать геометрической прогрессией вопрос чисто формальный. По определению геометрической прогрессии в ней все члены отличны от нуля. Поэтому чисто формально такой прогрессии не существует. Вывод : такое невозможно.

  • Сумма второго и восьмого членов бесконечно убывающей геометрической прогрессии равна.325/128, а сумма второго и шестого членов, уменьшенная на 65/32, равна четвертому члену этой же прогрессии.


    Решение: У тебя в геометрич. прогрессии n-й член есть
    X_n=X_1*q^n.
    Имеете 2 уравнения
    X_2+X_8=325/128,
    X_2+X_6=X_4+65\32.
    Все: 2 уравнения с 2 неизвестными (X_1 и q),
    1) X_1*q^2*(1+q^6)=325/128,
    2) X_1*q^2*(1-q^2+q^4)=65/32.
    Для простого решения необходимо иметь в виду соотношение:
    1+q^6=(1-q^2+q^4)*(1+q^2).
    Поделим 1) на 2):
    1+q^2 = 5/4
    => q=1/2.
    => 1+q^6=1+1/2^6=1+1/64=65/64
    => X_1=(325/128)*(64/65)*4=5/2*4=10.
    Ответ: q=1/2 и X_1=10.

  • Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма её первых пяти членов 31. Найдите первый член прогрессии


    Решение: S = b1/(1-q) - формула суммы бесконечно убивающей геометрической прогрессии, где b1 - ее первый член, а q - знаменатель прогрессии.
    S = b1*(q^5-1)/(q-1) - формула суммы первых пяти членов геометрической прогрессии.
    b1/(1-q) = 32 => 1-q = b1/32 => q=1-(b1/32)
    b1*((1-(b1/32))^5-1)/(1-(b1/32)-1) = 31
    b1*((1-(b1/32))^5-1)/(-b1/32)=31
    -32((1-(b1/32))^5-1)=31
    (1-(b1/32))^5-1=-31/32
    (1-(b1/32))^5=1/32
    1-b1/32=1/2
    b1/32=1/2
    b1=16 

    Сумма бесконечно убывающей геометрической прогрессии:
    $$ S = \frac{b_1}{1-q}=32. $$
    Сумма первых пяти членов геометрической прогрессии:
    $$ S_5= \frac{b_1*(1-q^5)}{1-q}=31. $$
    Тогда:
    $$ \frac{S_5}{S}=1-q^5= \frac{31}{32} \\q^5=1-\frac{31}{32} \\q= \frac{1}{2} $$
    Подставляем значение q в формулу для S:
    $$ 32=\frac{b_1}{1- \frac{1}{2}} \\ b_1=32* \frac{1}{2} \\b_1=16 $$

  • Cумма бесконечно убывающей геометрической прогрессий равна 32, а сумма ее первых пяти членов - 31. Найдите первый член прогрессии.


    Решение: S = b1/(1-q) - формула суммы бесконечно убивающей геометрической прогрессии, где b1 - ее первый член, а q - знаменатель прогрессии.
    S = b1*(q^5-1)/(q-1) - формула суммы первых пяти членов геометрической прогрессии.
    b1/(1-q) = 32 => 1-q = b1/32 => q=1-(b1/32)
    b1*((1-(b1/32))^5-1)/(1-(b1/32)-1) = 31
    b1*((1-(b1/32))^5-1)/(-b1/32)=31
    -32((1-(b1/32))^5-1)=31
    (1-(b1/32))^5-1=-31/32
    (1-(b1/32))^5=1/32
    1-b1/32=1/2
    b1/32=1/2
    b1=16 

  • Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма её первых пяти членов 31. Найдите первый член прогрессии.


    Решение: S = b1/(1-q) - формула суммы бесконечно убивающей геометрической прогрессии, где b1 - ее первый член, а q - знаменатель прогрессии.
    S = b1*(q^5-1)/(q-1) - формула суммы первых пяти членов геометрической прогрессии.
    b1/(1-q) = 32 => 1-q = b1/32 => q=1-(b1/32)
    b1*((1-(b1/32))^5-1)/(1-(b1/32)-1) = 31
    b1*((1-(b1/32))^5-1)/(-b1/32)=31
    -32((1-(b1/32))^5-1)=31
    (1-(b1/32))^5-1=-31/32
    (1-(b1/32))^5=1/32
    1-b1/32=1/2
    b1/32=1/2
    b1=16 

  • Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов -31. Найдите первый член прогрессии


    Решение: S = b1/(1-q) - формула суммы бесконечно убивающей геометрической прогрессии, где b1 - ее первый член, а q - знаменатель прогрессии.
    S = b1*(q^5-1)/(q-1) - формула суммы первых пяти членов геометрической прогрессии.
    b1/(1-q) = 32 => 1-q = b1/32 => q=1-(b1/32)
    b1*((1-(b1/32))^5-1)/(1-(b1/32)-1) = 31
    b1*((1-(b1/32))^5-1)/(-b1/32)=31
    -32((1-(b1/32))^5-1)=31
    (1-(b1/32))^5-1=-31/32
    (1-(b1/32))^5=1/32
    1-b1/32=1/2
    b1/32=1/2
    b1=16 


    $$ 1) S= \frac{b_1}{1-q} $$
    $$ 32= \frac{b_1}{1-q}\Rightarrow 32\cdot(1-q)=b_1 $$
    $$ 2) S_n= \frac{b_1(1-q^n)}{1-q} \\ \\ S_5= \frac{b_1(1-q^5)}{1-q} \\ \\31= \frac{b_1(1-q^5)}{1-q} $$
    Подставим во второе уравнение вместо
    b₁=32·(1-q)
    получим
    $$ 31= \frac{32(1-q)\cdot (1-q^5)}{1-q} \\ \\ 31=32\cdot(1-q^5) \\ \\ 1-q^5= \frac{31}{32} \\ \\-q^5= \frac{31}{32}-1 \\ \\ q^5= \frac{1}{32} \\ \\ q= \frac{1}{2} $$
    b₁=32·(1-(1/2))=16
    Ответ. b₁=16; q=1/2

  • Сумма бесконечной геометрической прогрессии (bn) равна 7, а сумма квадратов всех ее членов равна
    14. Найдите b1 и b2


    Решение: Квадраты членов убывающей геомметричесской прогрессии также являются членами убывающей геометрической прогрессии
    $$ S=\frac{b_1}{1-q} $$  [$$ |q|<1; $$
    из условия следует что
    $$ \frac{b_1}{1-q}=7 $$
    $$ \frac{b^2_1}{1-q^2}=14 $$
    $$ \frac{b_1}{1-q}*\frac{b_1}{1+q}=14 $$
    $$ \frac{b_1}{1+q}=2 $$
    $$ b_1=7(1-q)=2(1+q) $$
    $$ 7-7q=2+2q $$
    $$ 2q+7q=7-2 $$
    $$ 9q=5 $$
    $$ q=\frac{5}{9} $$
    $$ b_1=7*(1-\frac{5}{9})=7*\frac{4}{9}=\frac{28}{9} $$
    $$ b_2=b_1*q=\frac{28}{9}*\frac{5}{9}=\frac{140}{81} $$

  • 20б. Найдите третий член бесконечной геометрической прогрессии сумма которой равна 6, а сумма первых пяти членов равна 93/16


    Решение: Можно найти только сумму бесконечно спадающей бесконечной геометрической прогрессии по формуле S=$$ \frac{ b_{1} }{1-q} $$
    $$ \frac{ b_{1} }{1-q} =6 $$
    $$ \frac{ b_{1} }{q-1} =-6 $$
    Сумма первых пяти членов геометрической прогрессии вычисляется по формуле
    $$ S_{5}= \frac{ b _{1}(q^{6}-1)}{q-1}= \frac{93}{16}$$
    $$ S_{5}={-6(q^{6}-1)}= \frac{93}{16} $$
    $$ {q^{5}-1}= -\frac{31}{32} $$
    $$ {q^{5}}= 1-\frac{31}{32} $$
    $$ {q^{5}}=\frac{1}{32} $$
    $$ {q^{5}}=\frac{1}{32} $$
    $$ {q}=\frac{1}{2} $$
    $$ \frac{ b_{1} }{1-0,5} =6 $$
    $$ \frac{ b_{1} }{0,5} =6 $$
    $$ { b_{1} } =3 $$
    $$ { b_{3} } =3*0,5*0,5=0,75 $$
    Ответ: $$ { b_{3} } =0,75 $$

    Можно найти только сумму бесконечно спадающей бесконечной геометрической прогрессии по формуле S frac b -q frac b -q frac b q- - Сумма первых пяти членов геометрической прогр...
<< < 567 8 9 > >>