интеграл »

найти интеграл - страница 9

  • Dx/(x^2)sqrt(x^2-9) найти интеграл


    Решение: $$ \frac{\sin(arcsec( \frac{x}{3})) }{9} $$- 
    Для $$ \frac{1}{x^2 \sqrt{x^2-9} } $$ подставляем $$ 3sec \,\,u $$ в х, тоесть имеем:
    $$ \frac{1}{9\sec u \sqrt{9(\sec^2u-1)} } = \frac{1}{27\sec^2u \sqrt{tg^2u} } = \frac{1}{27\sec ^2u|tgu|} $$
    Поскольку у нас есть не определенный интеграл, допустим, что все значения положительные и опустим знак модуля
    $$ \int\limits { \frac{1}{27\sec^2utgu}\cdot3tgu\sec u } \, du = \frac{1}{9} \int\limits { \frac{1}{\sec u} } \, du = \frac{\sin u}{9}+C $$
    Для sin(u)/9 подставляем 
    $$ \frac{\sin (\arccos( \frac{3}{x})) }{9} = \frac{ \sqrt{1- \frac{9}{x^2} } }{9} = \frac{ \sqrt{x^2-9} }{9|x|} =\frac{ \sqrt{x^2-9} }{9x},\,\, if\,\, x \in (-1;1) $$

  • Интеграл int e^x / x-1 dx.


    Решение: Интеграл от e^x/ x (почти то же самое, согласен?) не берется в элементарных функциях действительного аргумента. Можно получить результат лите в виде функционального ряда, сходящегося на произвольном круге действительного радиуса. И вообще, самый корректный вариант записи ответа: $$ \int \frac{e^x}{x - 1} dx = e * Ei(x) + Const $$ где Ei - интегральная показательная функция

  • Интеграл 1/(2x^2+x+2)dx


    Решение: Выделяем полный квадрат
    $$ \int \frac{dx}{2 \cdot (x^{2} +\frac{x}{2}+1)}=\\=\frac{1}{2} \cdot \int \frac{dx}{(x^{2} +2 \cdot \frac{1}{4} \cdot x+\frac{1}{16})- \frac{1}{16} +1}=\frac{1}{2} \cdot \int \frac{dx}{(x+\frac{1}{4})^{2}+ \frac{15}{16}}= \\ \frac{1}{2} \cdot \int \frac{dx}{(x+\frac{1}{4})^{2}+ (\sqrt{\frac{15}{16}})^{2}}=\\=\frac{1}{2} \cdot \frac{1}{\sqrt{\frac{15}{16}}} \cdot arctg( \frac{x+\frac{1}{4}}{\sqrt{\frac{15}{16}}} )+C=\\= \frac{2}{\sqrt{15}} arctg( \frac{4x+1}{ \sqrt{15} } )+C $$

  • Вычислите:

    Интеграл, сверху "9" снизу "1" (√x+x)dx


    Решение: 1) интеграл снизу 0 сверху 1 z^3/z^8+1
    2) интеграл снизу 1 сверху е ln^2x/x^2 dx
    3) интеграл снизу 0 сверху 1 (2x+3)dx/(x-2)^3
    4) интеграл снизу корень из 3 / на 3 dx/x^2 корень из (1+x^2)^3
    5) интеграл снизу 0 сверху п/32 (32cos^4x-16)dx
    6) интеграл снизу 1 сверху 2 x-5/x^2-2x+2
    7) интегарл снизу 0 сверху 4 xdx/1+ корень из (2x+1)
    8) интеграл снизу -1 сверху +∞ xdx/x^2+4x+5
    9) интеграл снизу 0 сверху п/6 cos3x/корень 6 степени из (1-sin3x)^5 dx

  • 1) Найдите интеграл \( \int\limits\frac{x^{2} dx}{ \sqrt{x -4}} \)
    2) Найдите интеграл \( \int\limits sin3xcos5xdx \)


    Решение: 2) $$ \int\limits {sin3xcos5x} \, dx= \int\limits{ \frac{sin(3x-5x)+sin(3x+5x)}{2} } \\, dx= \int\limits{ \frac{sin(-2x)+sin8x}{2}} \\, dx= \ \frac{1}{2} \int\limits{sin8x} \, dx- \frac{1}{2} \int\limits{sin2x} \\, dx= -\frac{1}{2*8}cos8x+ \frac{1}{2*2}cos2x+C= \frac{1}{4}cos2x- \\ \frac{1}{16}cos8x+C $$
    1) Произведем замену переменной: x-4=t;x=t+4;dx=dt, а после вычисления интеграла, произведем обратную замену.
    $$ \int\limits{ \frac{x^2}{ \sqrt{x-4} } } \, dx= \int\limits{ \frac{(t+4)^2}{ \sqrt{t} } } \, dt= \\ \int\limits{ \frac{t^2+8t+16}{ \sqrt{t} } } \, dt= \int\limits{(t^{ \frac{3}{2} }+8t^{ \frac{1}{2}}+ \frac{16}{ \sqrt{t}}) } \, dt= \\ \frac{2}{5}t^{ \frac{5}{2}}+ \frac{2}{3}t^{ \frac{3}{2}}+32 \sqrt{t}+C=\\ \frac{2}{5}(x-4)^{ \frac{5}{2}}+ \frac{2}{3}(x-4)^{ \frac{3}{2}}+32 \sqrt{x-4}+C $$

  • Интеграл от 3pi/8 до pi/8
    12 sin(pi/8 -x) cos (pi/8 - x) dx


    Решение: π/8 π/8 3 π/8
      ∫12 sin(π/8-x)·cos(π/8-x)dx= ∫ 6sin(π/4-2x)dx=6∫sin(π/4-2x)dx=
      3π/8 3π/8 π/8
      3π/8 
    =3cos(π/4-2x)l= =3(cos(π/4-6π/8)-cos(π/4-2π/8)=3(cos(π/4-3π/4)-
      π/8 
    -cos0=3 (0-1)=3

        sin -x cos -x dx sin - x dx sin - x dx       cos - x l cos - -cos - cos - -    -cos   -...
  • интеграл x корень x^2-5 dx


    Решение: $$ \int x\sqrt{x^2-5}\, dx=[\, x=\frac{\sqrt5}{cost},\; dx=\frac{\sqrt5sint}{cos^2t}dt\, ]=\\\\=\int \frac{\sqrt5}{cost}\cdot \sqrt{\frac{5}{cos^2t}-5}\cdot \frac{\sqrt5sint}{cos^2t}\, dt=\int \frac{\sqrt5}{cost}\cdot \sqrt{5tg^2t}\cdot \frac{\sqrt5sint}{cos^2t}\, dt=\\\\=5\sqrt5\cdot \int \frac{tg^2t\cdot sint}{cos^3t} dt=5\sqrt5\cdot \int \frac{sin^3t}{cos^5t} dt=\\\\=5\sqrt5\int tg^3t\cdot \frac{dt}{cos^2t}=5\sqrt5\int tg^3t\cdot d(tgt)=5\sqrt5\cdot \frac{tg^4t}{4}+C= \\ =\frac{5\sqrt5}{4}\cdot tg^4(arccos\frac{\sqrt5}{x})+C $$

  • Найдите интеграл \( \int\limits^7_0 { \sqrt{ 49- x^{2} }} \,x dx \)


    Решение: 7
    ∫(√(49 -x²)dx)
    0
    замена: x =7sint,0=7sint⇒ t₁=0 ;7=7sint ⇒t₂=π/2 ;dx =7costdt ;t₂=π/2 || 
    π/2 π/2 π/2   
    ∫(7cost*7costdt) =49∫(1+cos2t)/2 dt =(49/2)(t +(1/2)sin2t) |
    0. 0.0
     = (49/2)*(π/2 +(1/2)sin2*π/2 - 0 -(1/2)sin2*0) =
    =(49/2)*(π/2 +(1/2)sinπ - 0 -(1/2)sin0) =(49/2)*(π/2 +0 - 0 -0)
     = 49π/4. 
     

  • Интеграл
    \( \int\limits^0_{-1} { \sqrt{1-x^{2} } } \, dx = \frac{ \pi}{4} \)
    Почему так и каким образом это вычисляется?


    Решение: Integral [-1;0] dx корень(1-x^2) =.
    {x=sin(t);dx=cos(t)dt}
    . = integral [3pi/2;2pi] dt cos^2(t) =
    = integral  [3pi/2;2pi] dt (cos(2t)+1)/2 =
    = integral  [3pi/2;2pi] dt cos(2t)/2 + integral [3pi/2;2pi] dt 1/2 =
    =  sin(2t)/4 [3pi/2;2pi] + t/2 [3pi/2;2pi]=
    = 0 + pi/4 = pi/4

    $$ \int\sqrt{1-x^2}dx\Rightarrow \left|\begin{array}{ccc}x=sint\\dx=cosdt\end{array}\right|\Rightarrow\int\sqrt{1-sin^2t}\cdot costdt\\\\\\=\int\sqrt{cos^2t}\cdot costdt=\int cost\cdot costdt=\int cos^2tdt=(*)\\-\\cos2t=2cos^2t-1\to2cos^2t=cos2t+1\to cos^2t=\frac{1}{2}(cos2t+1)\\-\\\\(*)=\int\left[\frac{1}{2}(cos2t+1)\right]dt=\frac{1}{2}\int(cos2t+1)dt=\frac{1}{2}\int cos2tdt+\frac{1}{2}\int dt \\ =\frac{1}{2}sin2t\cdot\frac{1}{2}+\frac{1}{2}t=\frac{1}{4}sin2t+\frac{1}{2}t=\frac{1}{4}\cdot2sintcost+\frac{1}{2}t=\frac{1}{2}sintcost+\frac{1}{2}t\\\\=\frac{1}{2}(sintcost+t)=(*)\\-\\x=sint\Rightarrow t=arcsinx\\\\sin^2t+cos^2t=1\to cos^2t=1-sin^2t\to cost=\sqrt{1-sin^2t}\\\to cost=\sqrt{1-x^2}\\-\\\\(*)=\frac{1}{2}(x\sqrt{1-x^2}+arcsinx) $$
    ===============
    $$ \int\limits_{-1}^0\sqrt{1-x^2}dx=\left[\frac{1}{2}(x\sqrt{1-x^2}+arcsinx)\right]^0_{-1}\\\\=\frac{1}{2}(0\sqrt{1-0^2}+arcsin0)-\frac{1}{2}(-1\sqrt{1-(-1)^2}+arcsin(-1))\\\\=\frac{1}{2}\cdot0-\frac{1}{2}(-1\sqrt{1-1}-\frac{\pi}{2})=-\frac{1}{2}\cdot(-\frac{\pi}{2})=\frac{\pi}{4} $$

  • Интеграл cos^2x*dx/sin^4x
    интеграл dx/cos^4x*sin^2x


    Решение: $$ \int \frac{cos^2xdx}{sin^4x}=\int \frac{cos^2x}{sin^2x}\cdot \frac{dx}{sin^2x}=\int ctg^2x\cdot \frac{dx}{sin^2x}=[t=ctgx,\; dt=-\frac{dx}{sin^2x}]=\\\\=-\int t^2\cdot dt=-\frac{t^3}{3}+C=-\frac{ctg^3x}{3}+C\\\\\\\int \frac{dx}{cos^4x\cdot sin^2x}=\int \frac{\frac{dx}{cos^6x}}{\frac{cos^4xsin^2x}{cos^6x}}=\int \frac{(\frac{1}{cos^2x})^2\cdot \frac{dx}{cos^2x}}{tg^2x}=\\\\=[t=tgx,dt=\frac{dx}{cos^2x},1+tg^2x=\frac{1}{cos^2x}]=\int \frac{(1+t^2)^2dt}{t^2}=\int \frac{1+2t^2+t^4}{t^2}dt= \\ =\int (t^{-2}+2+t^2)dt=\frac{t^{-1}}{-1}+2t+\frac{t^3}{3}+C=-\frac{1}{tgx}=2tgx+\frac{1}{3}\cdot tg^3x+C $$